THC-IPV6
A toolkit for attacking IPv6 and ICMPv6
Marc “van Hauser” Heuse
Hello, my name is ...
Kids, back in 2005 ...
The first IPv6/ICMPv6 attack toolkit
Today: 60 tools
Design

• Packet Crafting Library
• One small tool per attack idea
• Easy to use (even by mommy)
• Requiring Linux + Ethernet, works in VM
The only IPv6 toolkit that can send into PPTP, 6to4 and 802.1q tunnels
Scanning Tools!

- **Alive Scanning:**
 - Alive scanning techniques: alive6
 - ICMPv6 Inverse Lookup: inverse_lookup6
 - ICMPv6 Node Query: node_query6

- **DNS enumeration:**
 - Brute: dnsdict6
 - Reverse: dnsrevenumen6
 - DNSSEC: dnssecwalk

- **Local Discovery:**
 - NS: detect-new-ip6
 - Sniff: passive_discovery6

- **Tracerouter:**
 - trace6

- **Helper tools:**
 - address6
Man-in-the-Middle Spoofing Tools!

- ICMPv6 Redirects: redir6, redirsniff6
- NDP: parasite6, fake_advertise6
- RA: fake_router6, fake_router26
- DHCPv6: fake_dhcps6
- DNS: fake_dns6d
- Mobility: fake_mipv6
Denial-of-Service Tools!

- flood_advertise6
- flood_dhcpc6
- flood_mld6
- flood_mld26
- flood_mldrouter6
- flood_router6
- flood_router26
- flood_solicitate6
- denial6
- dos-new-ip6

- exploit6
- fake_advertise6
- kill_router6
- ndpexhaust6
- ndpexhaust26
- rsmurf6
- sendpees6
- sendpeesmp6
- smurf6
- thcsyn6
Testing Tools!

- Extension headers + ICMPv6: implementation6
- Fragmentation: fragmentation6
- Firewall filtering: firewall6
- ICMPv6: randicmp6
- Fuzzer: fuzz_ip6
More Tools!

- covert_send6 + covert_send6d
- detect_sniffer6
- dump_router6
- fake_dnsupdate6
- fake_mld26
- fake_mld6
- fake_mldrouter6
- fake_pim6
- fake_solicitate6
- inject_alive6
- thcping6
- toobig6
Future

• More attack tools, e.g.
 – DHCPv6 client fuzzer
 – DHCPv6 server fuzzer
 – More configurable DHCPv6 fake server
 – More advances to scanning (alive6) and RA flooding (flood_router26)
 – More fragmentation weirdness tests
 – ...

If you want to contribute – contact me 😊
Others – what else you can use

• Fernando Gont’s ipv6-toolkit
• Scapy
 – www.secdev.org/projects/scapy/

You need to be an expert to use either of these, but they give total control on what and how to send
Testing IPv6 Firewalls with thc-ipv6
ct magazin für computer technik

Ab 300 Euro

Notebook-Schnäppchen
Subnotebooks, Arbeitstiere, Multimedia-Riesen und Chromebooks

WLAN-Speicheradapter
IPv6-Firewalls
Faktura als Webdienst
Samsung Galaxy S4 im Test
Günstige Windows-Phones

Industrieanlagen gehackt
Linux auf aktuellen PCs
OpenGL-Shader mit Qt
Tipps für Wenigdrucker

Probleme aufnehmen und streamen
Kabel-TV unverschlüsselt

Raas aus der Apple-Google-Microsoft-Cloud
Datenkraken ade
Kalender, Kontakte, E-Mail unter eigener Kontrolle
The Candidates!
What should a firewall do for IPv6?

- Correct handling of IPv6, Extension Headers and ICMPv6
- Check Extension Headers
- Filter Extension Headers
- Handle Fragmentation securely
- Handle ICMPv6 stateful
- Filter invalid source addresses
- Check Extension Header Options
- Filter Extension Header Options
- No rule bypass due Fragmentation
- No rule bypass due Extension Headers
- Check for harmful ICMPv6 content
YES

Please do this at home!
Filter bypass due EH and/or Fragmentation

• Test bypass techniques to open port:

 `firewall6 eth0 2001:db8:2::2 80`

• Test bypass techniques to filtered port:

 `firewall6 eth0 2001:db8:2::2 22`
Test results

All pass
ICMPv6 & Extension Header support

• Test what the firewall supports:

`implementation6 -p eth0 2001:db8:2::2`
Test results (Default settings)

• Cisco
 – only Source Routing Option is dropped
 – all extension header pass

• Fortinet
 – all extension header pass
 – Source Routing Option is not dropped

• Juniper
 – only Source Routing Option is dropped
 – all extension header pass
 – all ICMPv6 packets get through
Fragmentation Resource Issues

• CPU/RAM exhaustion tests:

```bash
for TEST in `seq 1 33`; do
timeout -s KILL 60 \
fragmentation6 -p -f eth0 \
2001:db8:2::2 $TEST
done
```
Test results

All are shaky, showing small/medium impact on packet forwarding
Testing anti-spoofing protection

• Network vendors call this the RPF check:

```
thcping6 eth0 2001:db8:2::ab9a
2001:db8:2::2
```
Test results

Fortinet does not filter the spoofed packets!
Stateful ICMPv6

- TooBig messages not belonging to a connection:

 toobig6 -u eth0 2001:db8:1::3
 2001:db8:2::2 1280
Test results

Juniper does not filter the spoofed packet! (because of erroneous defaults)
Harmful ICMPv6 packet contents

• TooBig message with impossible small or large values:

 toobig6 eth0 2001:db8:1::2
 2001:db8:2::2 48

 toobig6 eth0 2001:db8:1::2
 2001:db8:2::2 100000
Test results

All let this pass
NDP Exhaustion Tests

• Perform NDP Exhaustion attacks with ICMPv6 TooBig and EchoRequest:

 ndpexhaust26 -c -r eth0 2001:db8:2::

 ndpexhaust26 -c -r -p eth0 2001:db8:2::
Test results

Fortinet & Cisco get 100% CPU
(also after doing vendor recommended settings)
SYN Flooding Tests

- Send SYN packets to port 80 and random ports, send SYN-ACK to random ports, send ACK packets to port 80:

 thcsyn6 eth0 2001:db8:2::2 80
 thcsyn6 eth0 2001:db8:2::2 x
 thcsyn6 -S eth0 2001:db8:2::2 x
 thcsyn6 -A eth0 2001:db8:2::2 80
Test results

All get 100% CPU
(also after doing vendor recommended settings)
At some point in the test:
lost all IPv6 filter rules, defaulted to open, not visible in GUI
In Conclusion ...
Hints on how to filter IPv6 on firewalls

• http://heise.de/-1851747
Contact

Marc Heuse

+49 (0)177 961 15 60
+49 (0)30 37 30 97 26
mh@mh-sec.de
www.mh-sec.de
winsstrasse 68
d-10405 berlin