
HoneydV6
A low-interaction IPv6 honeypot

Sven Schindler

Potsdam University / Beuth Hochschule Berlin

Berlin, June 12, 2013



Outline

1 Introduction

2 Adapting the configuration of virtual hosts

3 Modifying packet processing

4 ICMPv6 and NDP implementation

5 Random IPv6 request processing

6 Performance tests

7 Conclusion and future work

Sven Schindler HoneydV6 Frame 2 of 16



Introduction

What is a virtual honeypot and why do we need it?

Honeypot definition

A virtual honeypot is a security device that has no production value [2].This can
be something like a computer or even a mobile phone which only purpose is to
attract attackers, so that their attacks can be analysed.

provides level of interaction

classification based on level of interaction

Sven Schindler HoneydV6 Frame 3 of 16



Introduction

Honeyd

open source low-interaction honeypot

latest release version 1.5c does not support IPv6

custom network stack

simulate entire networks

supports OS fingerprinting

provides framework for service scripts

Tiny Honeypot, SCADA HoneyNet Project based on Honeyd

Sven Schindler HoneydV6 Frame 4 of 16



Introduction

Honeyd architecture

Figure: Honeyd architecture [1]

Sven Schindler HoneydV6 Frame 5 of 16



Adapting the configuration of virtual hosts

Adapting the configuration of virtual hosts

configuration parser modified to accept IPv6 addresses

IPv6 and IPv4 templates managed in splay tree

Example IPv4 configuration

create windows
set windows default tcp action reset
add windows tcp port 21 "scripts/ftp.sh"

set windows ethernet "aa:00:04:78:98:76"

bind 192.168.1.5 windows
bind 192.168.1.6 windows

Sven Schindler HoneydV6 Frame 6 of 16



Modifying packet processing

Modifying packet processing

template searched for incoming packets

packets assembled and forwarded to IPv6 dispatcher

fragmentation length and offset logged

checksum calculations updated

get_ip6_next_hdr implemented

updated callbacks to tcp_recv_cb46 and udp_recv_cb46

TCP/UDP connection structures updated

Sven Schindler HoneydV6 Frame 7 of 16



ICMPv6 and NDP implementation

Implementing ICMPv6 and the Neighbor Discovery Protocol

ICMPv6 echo request/reply

ICMPv6 Time Exceeded and Destination Unreachable

send and process neighbor solicitations

send router solicitations

process router advertisements

Sven Schindler HoneydV6 Frame 8 of 16



ICMPv6 and NDP implementation Pitfalls

Pitfalls

scope IDs in link-local addresses

static void addr_remove_scope_id(struct addr* ip6)
{

if (ip6->addr_data8 [0]==0xfe && ip6->addr_data8
[1]==0x80) {

/* delete scope id */
ip6->addr_data8 [2]=0;
ip6->addr_data8 [3]=0;

}
}

Sven Schindler HoneydV6 Frame 9 of 16



ICMPv6 and NDP implementation Pitfalls

Pitfalls

use of dynamic arrays

struct interface {
TAILQ_ENTRY(interface) next;

struct intf_entry if_ent;
int if_addrbits;
struct event if_recvev;
pcap_t *if_pcap;
eth_t *if_eth;
int if_dloff;

char if_filter [1024];
};

Sven Schindler HoneydV6 Frame 10 of 16



Random IPv6 request processing

Random IPv6 request processing

linear IPv6 address scan is impossible

attacker needs to find hosts

dynamically create new virtual hosts on demand

observe new scan approaches

all login attempts logged

Sven Schindler HoneydV6 Frame 11 of 16



Random IPv6 request processing

Configuration of random IPv6 request processing

Configuration

create randomdefault
set randomdefault default tcp action reset
add randomdefault tcp port 21 "scripts/ftp.sh"
add randomdefault tcp port 80 "scripts/web.sh"
set randomdefault ethernet "aa:00:04:78:98:78"

randomipv6 0.5 randomdefault 256

randomexclude 2001:db8::1
randomexclude 2001:db8::2
randomexclude 2001:db8::3

Sven Schindler HoneydV6 Frame 12 of 16



Performance tests Throughput measurements

Performance tests - throughput measurements

PRIMERGY TX200 S5 Server with an Intel Xeon processor 5500 series
and 4096 MB of RAM running Ubuntu 12.04

benchmark client was installed on a Lenovo ThinkPad L520 with an Intel
i5-2450M CPU and 4096 MB of RAM

computers connected via Brocade FWS648G FastIron switch using
Gigabit Ethernet

Filesize 1.5c (IPv4) V6 (IPv4) V6 (IPv6)

50 MB 15.98 s 16.19 s 16.33 s
100 MB 31.85 s 31.94 s 32.36 s

Table: Comparison of transmission time in seconds between the original Honeyd
version 1.5c and HoneydV6 - median values of 5 test runs

Sven Schindler HoneydV6 Frame 13 of 16



Performance tests Scalability

Performance tests - HTTP get request measurements

generated log file containing 20,000 HTTP GET request from different
source addresses

600 requests per second

honeyd configured to simulated single hosts (IPv4 and IPv6 connected)

web.sh script on port 80

1.5c (IPv4) V6 (IPv4) V6 (IPv6)

212.57 214.00 205.75

Table: Comparison of the number of HTTP GET requests per second that Honeyd 1.5c
and HoneydV6 is able to handle without any packet loss.

Sven Schindler HoneydV6 Frame 14 of 16



Conclusion and future work

Conclusion and future work

HoneydV6 is first low-interaction honeypot which can simulate entire IPv6
networks on a single host

may be used to add IPv6 support for low-interaction honeypots based on
honeyd

IPv4 / IPv6 search replace was not sufficient

new protocols implemented (NDP, ICMPv6)

random IPv6 request processing helps to understand new scan
approaches

OS fingerprinting and tunnel support not yet implemented

working on shellcode detection engine

Sven Schindler HoneydV6 Frame 15 of 16



Conclusion and future work

References

Niels Provos and Thorsten Holz.
Virtual Honeypots - From Botnet Tracking to Intrusion Detection.
Addison-Wesley, 2008.

Christian Seifert, Ian Welch, and Peter Komisarczuk.
Taxonomy of honeypots.
Technical report, Victoria University of Wellington, Wellington, 2006.

Sven Schindler HoneydV6 Frame 16 of 16


	Introduction
	Adapting the configuration of virtual hosts
	Modifying packet processing
	ICMPv6 and NDP implementation
	Pitfalls

	Random IPv6 request processing
	Performance tests
	Throughput measurements
	Scalability

	Conclusion and future work

