IPv6 Packet Creation With Scapy

Documentation
Release 1.0

Oliver Eggert

January 19, 2012

CONTENTS

Introduction

1.1 Structure of thisdocument e e e e e 1
1.2 BasicScapy Usage o o i i e e

The Standard IPv6 Header 3
The IPv6 Extension Headers 4
3.1 The Hop-By-Hop Extension Header 4
3.2 The Destination Extension Header 5
3.3 The Routing Extension Header 5
3.4 The Fragment Extension Header e 6
3.5 Variable Options o o o o e e e e e e e e e e e e e e e e e 6
3.6 Examples e e e e e e e e e 7
The ICMPv6 Headers 10
4.1 Destination Unreachable e e e e 10
42 Packettoo Big L e e e e 11
43 Time Exceeded e e e e 11
4.4 Parameter Problem L e e e e e 11
4.5 Echo Request and Echo Reply (Ping-Pong) 12
4.6 Exampleso e e e e e e e e e e e 12
Neighbor Discovery 14
5.1 Router SOLICItation 0 i it e e e e e e e e 14
5.2 Router AdVertisSement i it e e e e e e e e e e e e e e e e e 14
5.3 Neighbor Solicitation e e e 15
5.4 Neighbor Advertisement L e e 16
5.5 Redirect. e 16
56 Examples oL e e 17
Multicast Router Discovery 19
6.1 Multicast Router Solicitation L 19
6.2 Multicast Router Advertisement e e e e 19
6.3 Multicast Router Termination 0 i e e e e e e e 20
6.4 Examples e e e e e e e e e 20
Multicast Listener Discovery 21
7.1 Examples o e e e e e e e e e e e e e e 21

CHAPTER
ONE

INTRODUCTION

Welcome to “IPv6 Packet Creation With Scapy”. This guide provides a list of some of the most often used IPv6-related
header types and how to build them with scapy.

We assume the reader has some familarity with IPv6 and related protocols, such as ICMPv6 or Neighbor Discovery.
We won’t explain the meaning of every header option.

The guide is being written as part of the project IPv6 Intrusion Detection System, funded by BMBF.

1.1 Structure of this document

IPv6 is a very complex thing made up of various components. To give this guide some structure, we’ll first explain
the very core of IP, that is the basic [Pv6-Header, the Extension-Headers and the ICMPv6-Headers. We then examine
the rest of the IPv6 protocol suite feature-by-feature, rather than stack-by-stack or protocol-by-protocol (for example,
Neighbor Discovery is technically speaking part ICMPv6 as well). We hope this keeps the guide more focused.

For each feature, we provide a link to the RFC in which that feature is specified in and show the header structures (the
“ascii-art” tables from that RFC). We also show how scapy maps the header fields to class members.

Some features of IPv6 are not within the scope of the project and are therefore not included in this document. This
includes DHCPv6 and MoblielP

1.2 Basic Scapy Usage

Scapy is a tool written in python that allows you to easily create, manipulate, send and receive network packets. We
assume the reader has a basic understanding of what scapy is and how to use it, so we won’t go into too much detail.
For a more thorough introduction consider reading the official documentation.

However, we’d like to outline some of the more important features:
« Different protocols and header types are represented by different classes, such as TPv6 or TCMP.

* You can “stack” protocols on top of each other, just like a real network stack would, by using the Slash-Operator
(/): IPv6 () /TCP () creates a TCP-over-IPv6-Packet.

* Packets can be viewed with the show () and show?2 () functions. They can be sent with the send (),
sendp (), sr(),srl (), srp () functions.

* Most, if not all, header options can be manipulated. They are class members and can be accessed either in the
constructor or via normal member access, like this:

http://www.ipv6-ids.de
http://www.bmbf.de/
http://www.secdev.org/projects/scapy/doc/

IPv6 Packet Creation With Scapy Documentation, Release 1.0

x=IP (ttl=64)
X.src="127.0.0.1"

* Scapy can fill header options. You don’t need to provide all the information.

» To see what options are available, you could use the 1s () function or look them up in this guide.

1.2. Basic Scapy Usage 2

CHAPTER
TWO

THE STANDARD IPV6 HEADER

The IPv6 Header is defined in RFC2460 and looks like this:

tot—t—t—t—F—F—t—t—F—F—F—t—t—F—F—F—t—t—F—F—F—F—+—
Flow Label
-ttt —F—F—t—F—F—F—F—t—t—F—F—F -t —F—F—+—+—+—

|Version| Traffic Class |

| Payload Length

Next Header
+—t—+—+—F—F—F—F—+—F—F—F—F—F—t+—F—+—F—F—F—+—+—+—+—

|
+
|
+ Source Address
|
+
|

+

+

+

s B e

—4 1+ -
Hop Limit
=ttt —+-—

Fot bttt ottt ==+ —

|
+
|
+ Destination Address
|
+
|

+

|
+

|
+

|
+
|
+
|
+
|
+

[
+
|
+
|
+
[

e S S L T St S e S s S B A

In scapy IPv6 packets are represented by the TPv6-class. Scapy maps the header fields to the following class members:

>>> 1s (IPv6)

version : BitField

tc : BitField

fl : BitField

plen : ShortField

nh : ByteEnumField
hlim : ByteField

src : SourcelIP6Field
dst : IP6Field

Note the default values in the brackets. For example, the “version”-field should have the value “6” for [Pv6. Empty
fields will be filled by scapy when passed to one of the send() functions. As stated in the previous chapter, you can
manipulate the options in the constructor or via normal member access.:

x = IPv6 (src='fe80::0123:4567")
x.hlim=255

http://tools.ietf.org/html/rfc2460

CHAPTER
THREE

THE IPV6 EXTENSION HEADERS

Compared with IPv4, the IPv6 header has duplicated in size. To not increase the size further, the basic header holds
only those fields that are absolutley neccessary. Optional data has to be provided in extension headers.

RFC2460 defines 4 Extension Headers: the Hop-By-Hop, Destination, Routing and Fragment header.

Each of these headers (and the basic IPv6 header as well) has a field next header. It contains a number that specifies
which header will follow. These values are:

* Hop-By-Hop: 0
* Routing: 43

* Fragment: 44

¢ Destination: 60

If the next header is part of another protocol (i.e. TCP or UDP) then you have to use their protocol numbers (6 or 17,
respectively). For a list of all protocol numbers, see here.

Should no next header follow, i.e. an IPv6 packet with no payload, then the value of next header should be 59.

3.1 The Hop-By-Hop Extension Header

The Hop-By-Hop header is represented by the IPv6Ext HdrHopByHop-class and looks like this:

+—t—t—F—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F -+ —F—F—F—F—F—+—+—+—F+—+—+

| Next Header | Hdr Ext Len | |

s Rt I B e e e e e +

| |
Options

| |
T A S R R
The class members are:

>>> 1s (IPv6ExtHdrHopByHop)

nh : ByteEnumField = (59)
len : FieldLenField = (None)
autopad : _PhantomAutoPadField = (1)
options : _HopByHopOptionsField = ([1])

See section Variable Options below for a list of possible options.

http://tools.ietf.org/html/rfc2460
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

IPv6 Packet Creation With Scapy Documentation, Release 1.0

3.2 The Destination Extension Header

The Destination Header is represented by the class :py:class ‘IPv6ExtHdrDestOpt‘-class and looks like this:

+—t—t—F—t—F—t—F—t—F—+—t—F—t—F—t—F—t—F—t—F—F—F—F—t—F—F—F - —F—+—+—+
| Next Header | Hdr Ext Len | |
+—t—+—+—F—F—F—t+—+—+—F—F—F—+—+—+—+ +
| |

Options
| |
fot—t—t—t—F—F—F—t—t—F—F—F—t—F—F—F—F—t—F—F—F—F =t —F—F—F—F—F—F—F—F+—+
The class members are:

>>> 1s (IPv6ExtHdrDestOpt)

nh : ByteEnumField = (59)
len : FieldLenField = (None)
autopad : _PhantomAutoPadField = (1)
options : _HopByHopOptionsField = ([])

See section Variable Options below for a list of possible options.

3.3 The Routing Extension Header

The Routing header is represented by the IPv6Ext HdrRout ing-class and looks like this:

Fot—t—t—t—t—t—t—F bttt —t—t—F—F—F—t—F—F—F—F—t—F—F—F—t—F—+—+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+—t—t—F—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F—F—F—F—F—F—F—F—+—+—F+—F+—F+—+

| |
type-specific data

| |

t—t—F—t—F—t—F—F—F—F—t—F—t—F—t—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—F+—+

There is currently only the Routing Header Type 0. It is deprecated and should not be used (see RFC5095). The
type-specific data for RH Type 0 looks like this:
Fot—t—t—t—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—F—F—t—+—+—+

[Reserved |

bttt bttt —F—t—t—F—t—t—F—F—t—t—

|

|

+ +
| |
+ Address|[1] +
| |
+ +
| |
+—t+—+—+—F—F—F—t+—+—F—F—F—F—+—t+—+—F—F—F—F -+ -+t —F—F—F—F—+—+—F+—F+—+—+

| |
+ +
| |
+ Address[2] +
| |

3.2. The Destination Extension Header 5

http://tools.ietf.org/html/rfc5095

IPv6 Packet Creation With Scapy Documentation, Release 1.0

+ +

| |
Fot—t ottt —t—t—F—F—t—t—t—F—t—t—F—F—t—F—t—F—F—F—t—F—+—+

+—+—+—+—+—F—F—F+—-+—+—+—+—F—-F+—F+—+—+—+—F—F—F—F+—F+—F+—F—F—F—F+—F+—+—+—+—+
| |
+ +
| |
+ Address[n] +
| |
+ +
| |

Fot—t—t—t—t—t—t—t—t—t—t—t—F—F—t—t—F—F—F—t—F—F—F—F—t—F—F—F—t—F—+—+

Although being deprecated, you can still build the RH Type 0 Header with scapy. The class members are:

>>> 1s (IPv6ExtHdrRouting)

nh : ByteEnumField = (59)
len : FieldLenField = (None)
type : ByteField = (0)
segleft : ByteField = (None)
reserved : BitField = (0)
addresses : IP6ListField = ([1)

3.4 The Fragment Extension Header

The Fragment header is represented by the IPv6Ext HdrFragment-class and looks like this:

s T Tt et T e St S e B

| Next Header | Reserved | Fragment Offset |Res M|
+—t—t—F—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F—+—F—F—F—F—F—F—+—+—+—F+—+—+
| Identification |

s B A St s S Tt A E

The class members are:

>>> 1s (IPv6ExtHdrFragment)

nh : ByteEnumField = (59)
resl : BitField = (0)
offset : BitField = (0)
res?2 : BitField = (0)

m : BitField = (0)

id : IntField = (None)

Note: the fields res! and res2 are reserved and currently unused. The offset is an unsigned integer that counts the offset
in steps of 8 Bytes. m = 0 means that this is the last fragment, m = I means that more fragments will follow. The id
identiefies the original packet that was split up into multiple fragments.

3.5 Variable Options

The “options”-field within the Hop-By-Hop and Destination-Header is used to carry a variable number of options.
When RFC 2460 was originally specified, those were not explicitly defined. It was merely stated that both headers

3.4. The Fragment Extension Header 6

IPv6 Packet Creation With Scapy Documentation, Release 1.0

will be needed, but not what options they should provide. Over the years some suggestions have been made and you
can now find a list of officially specified options here.

All Option Headers have the following format:
bttt ottt —t—F—t—F—t—F— - - — — - — — -

| Option Type | Opt Data Len | Option Data
-ttt -ttt —F—F—F—F—t—F—F—F—+— - - — - — — — —

The 8-bit Option Type specifies what option this is, the 8-bit Option Data Lenght specifies the lenght of the option,
followed by the Option Data. Since it is possible to have more than one option in a single Hop-By-Hop or Destination
Header you might need to pad your option, so that each new option aligns naturally and that the whole Header has
a length that is a multiple of 8 octets. For that, you may use the Padl and PadN option. See RFC2460. Scapy can
configure the padding automatically.

Scapy currently supports the following:

>>> 1s(Padl)
otype : _OTypeField = (0)

>>> 1s (PadN)

otype : _OTypeField = (1)
optlen : FieldLenField = (None)
optdata : StrLenField = ('")

>>> 1ls(RouterAlert)

otype : _OTypeField = (5)
optlen : ByteField = (2)
value : ShortEnumField = (None)

>>> 1s (Jumbo)

otype : _OTypeField = (194)
optlen : ByteField = (4)
Jjumboplen : IntField = (None)

>>> 1s (HAO)

otype : _OTypeField = (201)
optlen : ByteField = (106)
hoa : IPoField = ("::")

Explaining all options of those headers is not within the scope of this guide. The official list provides links to the
relevant RFCs.

There are some options that scapy does not have separate classes for. These are: Tunnel Encapsulation Limit, Quick-
Start, CALIPSO, Endpoint Identification and RPL-Option. You would have to build the hex-string and pass it to
IPv6ExtHdrHopByHop.options yourself should you want to use those features.

3.6 Examples

In this example we send an IPv6-Jumbogram with a spoofed source address. This will show you:
* how to create and modify an IPv6-Packet,
¢ how to add an Extension Header,
* how the variable extension header options work.

As this is the first example in this guide it will be a bit more detailed than the others.

3.6. Examples 7

http://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xml
http://tools.ietf.org/html/rfc2460
http://tools.ietf.org/html/rfc2675

IPv6 Packet Creation With Scapy Documentation, Release 1.0

3.6.1 Step 1:

We create and modify the IPv6-Packet. We need to specify the destination address and, as we don’t want scapy to
automatically use our real address, the spoofed source address:

base = IPv6 ()
base.dst = "fe80::12347
base.src = "fe80::dead:beef’

We let scapy figure out all the other settings.

3.6.2 Step 2:

We create an Extension Header. The Jumbogram-Option needs to go into the Hop-By-Hop Header:

extension = IPv6ExtHdrHopByHop ()
jumbo = Jumbo ()

Now let’s have a look at the Jumbogram. We have a maximum of 32 bit to specify the payload length of the jumbogram.
In this example we simply choose a big number like, 23*and paste the jumbo-option into the hop-by-hop-header:

jumbo . jumboplen = 2%%x30
extension.options = jumbo

3.6.3 Step 3:

Stack the headers, inspect the result and pass them to the send function:

packet = base/extension
packet.show2 ()
###[IPvo]##+#
version= 6L
tc= 0L
fl1= 0L
plen= 8
nh= Hop-by-Hop Option Header
hlim= 64
src= fe80::dead:beef
dst= fe80::1234
###[IPv6 Extension Header - Hop-by-Hop Options Header]###
nh= No Next Header
len= 0
autopad= On
\options\
| ### [Jumbo Payload]###
| otype= Jumbo Payload [1l1l: discard+ICMP not mcast, 0: Don’t change en-route]
| optlen= 4
| jumboplen= 1073741824

send (packet)

Done!

3.6. Examples 8

http://tools.ietf.org/html/rfc2675

IPv6 Packet Creation With Scapy Documentation, Release 1.0

Hint: All of this can be done in one line:

(IPv6 (dst='fe80::1234" ,src='fe80: :dead:beef’) /IPv6oExtHdrHopByHop (options=Jumbo (jumboplen=2++30)))

3.6. Examples 9

CHAPTER
FOUR

THE ICMPV6 HEADERS

The Internet Control Message Protocol for the Internet Protocol Version 6 (ICMPv6) provides additional features for
IPv6. It is defined in RFC2463.

ICMPv6 defines separate headers for four error messages (Destination Unreachable, Packet Too Big, Time Exceeded
and Parameter Problem) and two informational messages (Echo Request and Echo Reply).

As is the case with the IPv6-Extension headers, each ICMPv6 Header has a type that identifies it. The default values for
the various types can be seen in the following sections, as scapy gives the default value of the fype-field. Additional
Features, such as Autoconfiguration and Neighbor Discovery, are also done via ICMPv6, but discussed in separate
chapters.

4.1 Destination Unreachable

The Destination Unreachable header is represented by the ICMPv6DestUnreach-class and looks like this:

Fot—t—t—t—t—t—t—F—F—t—t—t—Ft—F—F—t—Ft—F—t—t—F—F—F—F—t—F—F—t—t—F—+—+
| Type | Code | Checksum |
Fot—t ettt —+—+
| Unused |
f—t -ttt -ttt —F—F -ttt —F—F -ttt —F—F -t —F—F—F - —+—+—+—+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

The class members are:

>>> 1s (ICMPv6DestUnreach)

type : ByteEnumField = (1)
code : ByteEnumField = (0)
cksum : XShortField = (None)
unused : XIntField = (0)

RFC2463 defines the following the following reasons for being unable to deliver a packet. Enter these into the code-
Field:

- no route to destination

— communication with destination administratively prohibited
(not assigned)

- address unreachable

- port unreachable

S W N RO
|

10

http://tools.ietf.org/html/rfc2463
http://tools.ietf.org/html/rfc2463

IPv6 Packet Creation With Scapy Documentation, Release 1.0

4.2 Packet too Big

The Packet Too Big header is represented by the ICMPvé6PacketTooBig- class and looks like this:

-ttt —F—F -ttt —F—F—t—F—F—F—F -t —F—F—F -t —F—F—F -+ —F—F+—+—+
| Type | Code | Checksum |
Fot—t—t—t bttt —t—t—F—t—t—t—F—F =t —t—F -ttt —t—F—F—F—t—F—+—+
| MTU |
t—t—t—t—t—F—F—t—F—t—F—F—Ft—F—t—F—F -ttt —F—F -t —F—F—F—F—F—+—+—+—+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

The class members are:

>>> 1s (ICMPv6PacketTooBig)

type : ByteEnumField = (2)
code : ByteField = (0)
cksum : XShortField = (None)
mtu : IntField = (1280)

According to the RFC, the code-field will be ignored by the receiver.

4.3 Time Exceeded

The Time Exceeded header is represented by the ICMPv6TimeExceeded-class and looks like this:

Fot—t—t—t bttt bttt —t—F—F—t—F—t—F—F—F—t—F—+—+
| Type | Code | Checksum |
+—t—t—F—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F—F—F—Ft—F—F—F—F—+—+—F+—F+—F+—+
| Unused |
-ttt —F—F—t—F—F—F—F—t—F—F—F—F—Ft—t—F—F—F -t —F—F—F -+ —F—F+—+—+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

The class members are:

>>> 1s (ICMPv6TimeExceeded)

type : ByteEnumField = (3)
code : ByteField = ({0: "hop limit exceeded in transit’,
1: ’"fragment reassembly time exceeded’})
cksum : XShortField = (None)
unused : XIntField = (0)

In this class you can already see the possible values for the code-field and their meaning.

4.4 Parameter Problem

The Parameter Problem header is represented by the ICMPvé6ParamProblem-class and looks like this:

Fot—t ettt —+—+
| Type | Code | Checksum |
+—t—t—+—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F—+—F—F—F—F—F—F—+—+—+—F+—F+—+
| Pointer [

4.2. Packet too Big 11

http://tools.ietf.org/html/rfc2463

IPv6 Packet Creation With Scapy Documentation, Release 1.0

-ttt —F—F—t—F—F—F—F—Ft—F—F—F—F—Ft—t—F—F—F—F—t—F—F—F—F -+ —F—F+—+—+
| As much of invoking packet |
+ as will fit without the ICMPv6 packet +
| exceeding the minimum IPv6 MTU [IPv6] |

The class members are:

>>> 1ls (ICMPv6ParamProblem)

type : ByteEnumField = (4)

code : ByteEnumField = (0)

cksum : XShortField = (None)
ptr : IntField = (6)

The possible values for the code field are:

0 - erroneous header field encountered

1 - unrecognized Next Header type encountered
2 - unrecognized IPv6 option encountered

The pointer field will point to the offset in the packet where the error occured (if it fits into this reply)

4.5 Echo Request and Echo Reply (Ping-Pong)

The Echo Request header is represented by the ICMPv6EchoRequest-class and looks like this:

+—t—+—F—F—F—F—t+—+—F—F—F—F—F—t+—F—F—F—F—F—F—F—F—F—F—F—F+—+—+—+—+—+—+
| Type | Code | Checksum |
s S R e s o Lt B R mt St S B
| Identifier | Sequence Number |
f—t—t—t—t—F—F—t—t—t—F—F—F—t—t—F—F—t—t—t—F—F—Ft—t—F—F—F—F—+—F—F—+—+
| Data

+—+—+—+—+—

The class members are:

>>> 1s (ICMPv6EchoRequest)

type : ByteEnumField = (128)
code : ByteField = (0)
cksum : XShortField = (None)
id : XShortField = (0)
seq : XShortField = (0)
data : StrField = (")

The Echo Reply header looks just the same. It is represented by ICMPv6EchoReply. They only differ in the
type-field: The EchoRequest has Type 128, the EchoReply has Type 129.

4.6 Examples

In this example we’ll build a ping (Echo Request) with a custom payload:

payload = "foo.bar " x 50

base=IPv6 (dst="fe80::1234")
extension=ICMPv6EchoRequest (data=payload)

packet = base/extension

4.5. Echo Request and Echo Reply (Ping-Pong) 12

IPv6 Packet Creation With Scapy Documentation, Release 1.0

packet.show ()

[IPvo]###
version= 6
tc= 0
fl= 0
plen= None
nh= ICMPv6
hlim= 64
src= ::1
dst= fe80::1234
###[ICMPv6 Echo Request]###
type= Echo Request
code= 0
cksum= None
id= 0x0
seqg= 0x0
data= ’foo.bar foo.bar foo.bar [...] foo.bar foo.bar ’

send (packet)

Note: We inserted the brackets to not have to show 50 *foo.bar*s. But they all show up in scapy’s output.

4.6. Examples 13

CHAPTER
FIVE

NEIGHBOR DISCOVERY

As a replacement for ARP, the Neighbor Discovery Protocol (NDP) was introduced in IPv6. With NDP, machines on
one link can find out about other machines, local routers, and determine link-layer addresses. It is defined in RFC
4861.

NDP messages are modularily built and consist of five core headers, explained below, and five nd_opts headers.

5.1 Router Solicitation

The Router Solicitation header is represented by the ICMPv6ND_RS-class and looks like this:

+—t+—t—F—F—F—F—t+—+—F—F—F—F—F—F—F—F—F—F—F -+ —F—F—F—F+—+—+—+—+—+—+
| Type | Code | Checksum |
i et e B R S e R e R R e R e R a t l H e e e e
| Reserved |
+—t—+—+—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F—F—+—+—F—F—F—F—+—+—+—F+—+—+
| Options

+—t—t—F—F—F—F—t+—+—F—F+—+—

The class members are:

>>> 1s (ICMPv6ND_RS)

type : ByteEnumField = (133)
code : ByteField = (0)
cksum : XShortField = (None)
res : IntField = (0)

Auvailable options for this header are:

e src_ll_addr

5.2 Router Advertisement

The Router Advertisment header is represented by the ICMPv6ND_RA-class and looks like this:

Fot ottt —+

| Type | Code \ Checksum |
s S s s L e S St st et S
| Cur Hop Limit [M]O] Reserved | Router Lifetime |

Fot ettt bttt — bttt — bttt =ttt —t— bt —F—F—t—t—F =t —+
| Reachable Time |
Fot—t ettt ettt —t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—t—F—+—+

14

http://tools.ietf.org/html/rfc4861
http://tools.ietf.org/html/rfc4861

IPv6 Packet Creation With Scapy Documentation, Release 1.0

| Retrans Timer [
ottt —F—t—F—F—F—F—F—F—t—F—t—F—F—Ft—F—F—F—F—F—F—F—F—F—F—F—F—+—+—+
| Options

F—t—t—t—t—t—t—F—F—F—F—F—

The class members are:

>>> 1s (ICMPV6ND_RA)

type : ByteEnumField = (134)
code : ByteField = (0)
cksum : XShortField = (None)
chlim : ByteField = (0)

M : BitField = (0)

0 : BitField = (0)

H : BitField = (0)
prf : BitEnumField = (1)

P : BitField = (0)
res : BitField = (0)
routerlifetime : ShortField = (1800)
reachabletime : IntField = (0)
retranstimer : IntField = (0)

The meaning of the fields H, prf and P are currently unknown.
Auvailable options for this header are:
o src_ll_addr

* mitu

* prefix_info.

5.3 Neighbor Solicitation

The Neighbor Solicitation header is representend by the ICMPv6ND_NS-class and looks like this:

T e e e St s B s St S B e
| Type | Code | Checksum |
+—t—t—F—F—F—F—t+—+—F—F—F—F—F—+—F—F—F—F—F—+—F—Ft—F—F—F—F—+—+—F+—F+—F+—+
| Reserved |
-ttt —F—F—t—F—F—F—F—t—F—F—F—F -ttt —F—F -t —F—F—F—F—+—F—F+—+—+

| |
+ +
| |
+ Target Address +
| |
+ +
| |
e s e e B e R e e R e R R e R e R et I e e e
| Options

s e

The class members are:

>>> 1s (ICMPVv6OND_NS)

type : ByteEnumField = (135)
code : ByteField = (0)
cksum : XShortField = (None)
R : BitField = (0)

5.3. Neighbor Solicitation 15

IPv6 Packet Creation With Scapy Documentation, Release 1.0

S : BitField = (0)
0 : BitField = (0)
res : XBitField = (0)
tgt : IP6Field = ("::7)

The meaning of the fields R, S and O are currently unknown.
Available options for this header are:

e src_ll_addr

5.4 Neighbor Advertisement

The Neighbor Advertisement header is represented by the ICMPv6ND_NA-class and looks like this:

+—F—t—t—F—F—F—Ft—F—F—F—F—F—F—F—F—F—Ft—F—F—F—F—F—F—F—F—F—F—F—F—F+—+—+
| Type | Code | Checksum |
-ttt -ttt —F—F -ttt —F—F -ttt —F—F -t —F—F—F—F - —+—+—+—+
|[R|IS|O] Reserved |
Rt s B e e e e S T e T R e Rt il (Ll

I
+
|
+ Target Address
|
+
I

Fot bttt ettt —t bttt =ttt bttt =t —F—F—t—F—F—
| Options
f—t—t—t—t—F—F—t—t—F—F—+—

The class members are:

>>> 1s (ICMPv6ND_NA)

type : ByteEnumField = (136)
code : ByteField = (0)
cksum : XShortField = (None)
R : BitField = (1)

S : BitField = (0)

0) : BitField = (1)
res . XBitField = (0)
tgt : IPoField = ("::7)

Auvailable options for this header are:

e target_ll_addr

5.5 Redirect

The Redirect header is represented by the ICMPv6ND_Redirect-class and looks like this:

e Rt I B T B S e R T e e i i s e B L e e e e
| Type | Code | Checksum |
Fot—t—t—t—F—F—F—t—F—F—F—F—t—t—F—F—F—F—t—F—F—F—F—t—F—F—F—F -+ —F+—+
| Reserved |
+—t—t—F—F—F—F—t+—+—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—F—+—+—+—+—+—+

5.4. Neighbor Advertisement 16

IPv6 Packet Creation With Scapy Documentation, Release 1.0

|
+
|
+ Target Address
|
+
|

A T T E S A s S A S B

|
+
|
+ Destination Address
|
+
|

|
+
|
+
|
+
|
+

|
+
|
+
[
+
|

e T e A St At s L et e T

| Options
f—t—t—t—t—F—F—t—t—F—F—+—

The class members are:

>>> 1s (ICMPv6ND_Redirect)

type : ByteEnumField = (137)
code : ByteField = (0)
cksum : XShortField = (None)
res : XIntField = (0)
tgt : IP6Field = ("::7)
dst : IP6Field = ("::7)

The available options for this header are:
* target_ll_addr
o redir_hdr

5.6 Examples

Let’s build a router solicitation with a source link-layer address option:

base=IPv6 (dst="fe80::1234")
router_solicitation=ICMPv6ND_RS ()
src_11_addr=ICMPv6NDOptSrcLLAddr (1lladdr="01:23:45:67:89:ab’)

packet=base/router_solicitation/src_11_addr
packet.show ()

###[IPvo]###
version= 6
tc= 0
fl= 0
plen= None
nh= ICMPv6
hlim= 255
src= ::1
dst= fe80::1234
###[ICMPv6 Neighbor Discovery - Router Solicitation]###
type= Router Solicitation

5.6. Examples

17

IPv6 Packet Creation With Scapy Documentation, Release 1.0

code= 0
cksum= None
res= 0
##4#[ICMPv6 Neighbor Discovery Option - Source Link-Layer Address]###
type= 1
len= 1
lladdr= 01:23:45:67:89:ab

send (packet)

5.6. Examples 18

CHAPTER
SIX

MULTICAST ROUTER DISCOVERY

The Multicast Router Discovery can be used to determine which router has multicast support enabled. It is specified

in RFC4286.

It introduces three new ICMPv6 Headers:

6.1 Multicast Router Solicitation

The Multicast Router Solicitation header is represented by the ICMPv6MRD_Solicitation-class and looks like

this:

e I S S St e St st A

| Type | Reserved

s B A S st B e e

The class members are:

>>> 1s (ICMPv6MRD_Solicitation)

type : ByteEnumField
res : ByteField
cksum : XShortField

+

Checksum

—t—tt -+

(152)

(None)

6.2 Multicast Router Advertisement

The Multicast Router Advertisment header is represented by the ICMPv6MRD_Advertisement-class and looks

like this:

s B At st At S e et e I s

| Type | Ad. Interval |
e St A s T
| Query Interval |
+—t—t—F—F—F—F—t+—F—F—F—F—F—+—+—+—+—

The class members are:

>>> 1s (ICMPv6MRD_Advertisement)

type : ByteEnumField
advinter : ByteField
cksum : XShortField
queryint : ShortField
robustness : ShortField

+

+

—t—t ettt b=ttt —F—t—+

—t ottt

Checksum

Robustness Variable

19

http://tools.ietf.org/html/rfc4286

IPv6 Packet Creation With Scapy Documentation, Release 1.0

6.3 Multicast Router Termination

The Multicast Router Termination header is represented by the ICMPv6MRD_Termination-class and looks like

this:

s s S S ity S e

| Type | Reserved

Checksum |

s T A St At S e e e s

The class members are:

>>> 1s (ICMPv6MRD_Termination)

type ByteEnumField
res ByteField
cksum XShortField

6.4 Examples

= (153)

(None)

We create a Multicast Router Advertisement with a custom advertisement interval. Let’s do this as a one-liner:

>>>
[IPvo 1###
version= 6L
tc= 0L
fl1= 0L
plen= 8
nh= ICMPv6
hlim= 1
src= ::1
dst= fe80::1234
#H# [

ICMPv6 Multicast Router Discovery Advertisement

(IPv6 (dst="fe80::1234") /ICMPv6MRD_Advertisement (advinter=40)) .show2 ()

1

type= Multicast Router Advertisement

advinter= 40
cksum= 0x57df
queryint= 0
robustness= 0

6.3. Multicast Router Termination

20

CHAPTER
SEVEN

MULTICAST LISTENER DISCOVERY

With Multicast Listener Discovery, multicast routers can find out about local nodes that want to receive and send
multicast packets. It is specified in RFC2710.

When sending MLD-Packets make sure you include a IPv6 Router Alert (see the example). Multicast Listener Dis-
covery adds three new ICMPv6 Headers, which all have the same structure:

Fot ottt —+

| Type | Code | Checksum |
T e e T A St s S s s e
| Maximum Response Delay | Reserved |

Fot ottt ottt bttt —+

|
+
|
+ Multicast Address
|
+
|

— = 4+ — + —

Fot ottt ottt —+

They only differ in type:
* type = 130 means it’s a Multicast Listener Query message,
* type = 131 means it’s a Multicast Listener Report message,
* type = 132 means it’s a Multicast Listener Done message.

They are represented by the ICMPv6MLQuery-, ICMPv6MLDone- and ICMPv6MLReport-class, respectively. All
three classes have the same members:

>>> 1s (ICMPv6MLReport)

type : ByteEnumField = (131)
code : ByteField = (0)
cksum : XShortField = (None)
mrd : ShortField = (0)
reserved : ShortField = (0)
mladdr : IP6Field = (None)

7.1 Examples

To send a Multicast Listener Discovery packet you need to do some extra configuration on the base header. REC2710
states that:

21

http://tools.ietf.org/html/rfc2710
http://tools.ietf.org/html/rfc2710

IPv6 Packet Creation With Scapy Documentation, Release 1.0

“All MLD messages described in this document are sent with a link-local IPv6 Source Address, an IPv6
Hop Limit of 1, and an IPv6 Router Alert option [RTR-ALERT] in a Hop-by-Hop Options header.”

So let’s build that:

base = IPv6(src='fe80::dead:beef’, dst="fe80::1234’, hlim=1)
hbh IPv6ExtHdrHopByHop (options = RouterAlert ())
mlg = ICMPv6MLQuery ()

packet=base/hbh/mlqg
packet.show ()

[IPve]###
version= 6
tc= 0
fl= 0
plen= None
nh= Hop-by-Hop Option Header
hlim= 1
src= fe80::dead:beef
dst= fe80::1234
###[IPv6 Extension Header — Hop-by-Hop Options Header]###
nh= No Next Header
len= None
autopad= On
\options\
| ### [Router Alert]###
| otype= Router Alert [00: skip, 0: Don’t change en-route]
| optlen= 2
| value= None
###[MLD - Multicast Listener Query]###
type= MLD Query
code= 0
cksum= None
mrd= 10000
reserved= 0
mladdr=

7.1. Examples 22

	Introduction
	Structure of this document
	Basic Scapy Usage

	The Standard IPv6 Header
	The IPv6 Extension Headers
	The Hop-By-Hop Extension Header
	The Destination Extension Header
	The Routing Extension Header
	The Fragment Extension Header
	Variable Options
	Examples

	The ICMPv6 Headers
	Destination Unreachable
	Packet too Big
	Time Exceeded
	Parameter Problem
	Echo Request and Echo Reply (Ping-Pong)
	Examples

	Neighbor Discovery
	Router Solicitation
	Router Advertisement
	Neighbor Solicitation
	Neighbor Advertisement
	Redirect
	Examples

	Multicast Router Discovery
	Multicast Router Solicitation
	Multicast Router Advertisement
	Multicast Router Termination
	Examples

	Multicast Listener Discovery
	Examples

